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Abstract—In any competitive business, success is based on the ability to make an item more appealing to customers than the
competition. A number of questions arise in the context of this task: how do we formalize and quantify the competitiveness between two
items? Who are the main competitors of a given item? What are the features of an item that most affect its competitiveness? Despite
the impact and relevance of this problem to many domains, only a limited amount of work has been devoted toward an effective
solution. In this paper, we present a formal definition of the competitiveness between two items, based on the market segments that
they can both cover. Our evaluation of competitiveness utilizes customer reviews, an abundant source of information that is available in
a wide range of domains. We present efficient methods for evaluating competitiveness in large review datasets and address the natural
problem of finding the top-k competitors of a given item. Finally, we evaluate the quality of our results and the scalability of our
approach using multiple datasets from different domains.
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1 INTRODUCTION

A Long line of research has demonstrated the strategic
importance of identifying and monitoring a firm’s

competitors [1]. Motivated by this problem, the marketing
and management community have focused on empirical
methods for competitor identification [2], [3], [4], [5], [6],
as well as on methods for analyzing known competitors [7].
Extant research on the former has focused on mining com-
parative expressions (e.g. ”Item A is better than Item B”)
from the Web or other textual sources [8], [9], [10], [11], [12],
[13]. Even though such expressions can indeed be indicators
of competitiveness, they are absent in many domains. For
instance, consider the domain of vacation packages (e.g
flight-hotel-car combinations). In this case, items have no
assigned name by which they can be queried or compared
with each other. Further, the frequency of textual compara-
tive evidence can vary greatly across domains. For example,
when comparing brand names at the firm level (e.g. “Google
vs Yahoo” or “Sony vs Panasonic”), it is indeed likely that
comparative patterns can be found by simply querying the
web. However, it is easy to identify mainstream domains
where such evidence is extremely scarce, such as shoes,
jewelery, hotels, restaurants, and furniture. Motivated by
these shortcomings, we propose a new formalization of the
competitiveness between two items, based on the market
segments that they can both cover. Formally:

Definition 1. [Competitiveness]: Let U be the population of
all possible customers in a given market. We consider
that an item i covers a customer u ∈ U if it can cover
all of the customer’s requirements. Then, the compet-
itiveness between two items i, j is proportional to the
number of customers that they can both cover.
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Our competitiveness paradigm is based on the following
observation: the competitiveness between two items is based
on whether they compete for the attention and business of the
same groups of customers (i.e. the same market segments). For
example, two restaurants that exist in different countries are
obviously not competitive, since there is no overlap between
their target groups. Consider the example shown in Figure 1.

Fig. 1: A (simplified) example of our competitiveness
paradigm

The figure illustrates the competitiveness between three
items i, j and k. Each item is mapped to the set of features
that it can offer to a customer. Three features are considered
in this example: A,B and C. Even though this simple exam-
ple considers only binary features (i.e. available/not avail-
able), our actual formalization accounts for a much richer
space including binary, categorical and numerical features.
The left side of the figure shows three groups of customers
g1, g2, and g3. Each group represents a different market
segment. Users are grouped based on their preferences with
respect to the features. For example, the customers in g2
are only interested in features A and B. We observe that
items i and k are not competitive, since they simply do not
appeal to the same groups of customers. On the other hand,
j competes with both i (for groups g1 and g2) and k (for
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g3). Finally, an interesting observation is that j competes for
4 users with i and for 9 users with k. In other words, k is
a stronger competitor for j, since it claims a much larger
portion of its market share than i.

This example illustrates the ideal scenario, in which we
have access to the complete set of customers in a given
market, as well as to specific market segments and their
requirements. In practice, however, such information is not
available. In order to overcome this, we describe a method
for computing all the segments in a given market based on
mining large review datasets. This method allows us to op-
erationalize our definition of competitiveness and address
the problem of finding the top-k competitors of an item in
any given market. As we show in our work, this problem
presents significant computational challenges, especially in
the presence of large datasets with hundreds or thousands
of items, such as those that are often found in mainstream
domains. We address these challenges via a highly scalable
framework for top-k computation, including an efficient
evaluation algorithm and an appropriate index.

Our work makes the following contributions:

• A formal definition of the competitiveness between
two items, based on their appeal to the various
customer segments in their market. Our approach
overcomes the reliance of previous work on scarce
comparative evidence mined from text.

• A formal methodology for the identification of the
different types of customers in a given market, as
well as for the estimation of the percentage of cus-
tomers that belong to each type.

• A highly scalable framework for finding the top-k
competitors of a given item in very large datasets.

2 DEFINING COMPETITIVENESS

The typical user session on a review platform, such as Yelp,
Amazon or TripAdvisor, consists of the following steps:

1) Specify all required features in a query.
2) Submit the query to the website’s search engine and

retrieve the matching items.
3) Process the reviews of the returned items and make

a purchase decision.

In this setting, items that cover the user’s requirements
will be included in the search engine’s response and will
compete for her attention. On the other hand, non-covering
items will not be considered by the user and, thus, will not
have a chance to compete. Next, we present an example that
extends this decision-making process to a multi-user setting.

Consider a simple market with 3 hotels i, j, k and 6
binary features: bar, breakfast, gym, parking, pool, wi-fi. Table 1
includes the value of each hotel for each feature. In this
simple example, we assume that the market includes 6 mu-
tually exclusive customer segments (types). Each segment
is represented by a query that includes the features that
are of interest to the customers included in the segment.
Information on each segment is provided in Table 2. For
instance, the first segment includes 100 customers who are
interested in parking and wi-fi, while the second segment
includes 50 customers who are only interested in parking.

TABLE 1: Hotels and their Features.

Name Bar Breakfast Gym Parking Pool Wi-Fi

Hilton Yes No Yes Yes Yes Yes
Marriot Yes Yes No Yes Yes Yes
Westin No Yes Yes Yes No Yes

TABLE 2: Customer Segments

ID Segment Size Features of Interest

q1 100 (parking, wi-fi)
q2 50 (parking)
q3 60 (wi-fi)
q4 120 (gym, wi-fi)
q5 250 (breakfast, parking)
q6 80 (gym, bar, breakfast)

In order to measure the competition between any two
hotels, we need to identify the number of customers that
they can both satisfy. The results are shown in Table 3. The
Hilton and the Marriot can cover segments q1, q3, and q4.
Therefore, they compete for (100 + 50 + 60)/660 ≈ 32%
of the entire market. We observe that this is the lowest
competitiveness achieved for any pair, even though the
two hotels are also the most similar. In fact, the highest
competitiveness is observed between the Marriot and the
Westin, that compete for 70% of the market. This is a critical
observation that demonstrates that similarity is not a good
proxy for competitiveness. The explanation is intuitive. The
availability of both a pool and a bar makes the Hilton and
the Marriot more similar to each other and less similar to
the Westin. However, neither of these features has an effect
on competitiveness. First, the pool feature is not required by
any of the customers in this market. Second, even though
the availability of a bar is required by segment q6, none
of the three hotels can cover all three of this segment’s
requirements. Therefore, none of the hotels compete for this
particular segment.

Another intuitive observation is that the size of the
segment has a direct effect on competitiveness. For example,
even though the Westin shares the same number of segments
(4) with the other two hotels, its competitiveness with the
Marriot is significantly higher. This is due to the size of the
q5 segment, which is more than double the size of q4.

TABLE 3: Common segments for restaurant pairs

Restaurant Pairs Common Segments Common %

Hilton, Marriot (q1, q2, q3) 32%
Hilton, Westin (q1, q2, q3, q4) 50%
Marriot, Westin (q1, q2, q3, q5) 70%

The above example is limited to binary features. In this
simple setting, it is trivial to determine if two items can
both cover a feature. However, as we discuss in detail in
Section 2.1, the items in a market can have different types
of features (e.g. numeric) that may be only partially covered
by two items. Formally, let p(q) be the percentage of users
represented by a query q and let V i,j

q be the pairwise coverage
offered by two items i and j to the space defined by the
features in q. Then, we define the competitiveness between
i and j in a market with a feature subset F as follows:
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CF (i, j) =
∑
q∈2F

p(q)× V q
i,j , (1)

This definition has a clear probabilistic interpretation:
given two items i, j, their competitiveness CF (i, j) represents the
probability that the two items are included in the consideration set
of a random user. This new definition has direct implications
for consumers, who often rely on recommendation systems
to help them choose one of several candidate products. The
ability to measure the competitiveness between two items
enables the recommendation system to strategically select
the order in which items should be recommended or the
sets of items that should be included together in a group
recommendation. For instance, if a random user u shows
interest in an item i, then she is also likely to be interested in
the items with the highest CF (i, ·) values. Such competitive
items are likely to meet the criteria satisfied by i and even
cover additional parts of the feature space. In addition, as
the user u rates more items and the system gains a more
accurate view of her requirements, our competitiveness
measure can be trivially adjusted to consider only those
features from F (and only those value intervals within each
feature) that are relevant for u. This competitiveness-based
recommendation paradigm is a departure from the standard
approach that adjusts the weight (relevance) of an item j
for a user u based on the rating that u submits for items
similar to j. As discussed, this approach ignores that (i) the
similarity may be due to irrelevant or trivial features and
(ii) for a user who likes an item i, an item j that is far
superior than i with respect to the user’s requirements (and
thus quite different) is a better recommendation candidate
than an item j′ that is highly similar to i.

In the following two sections we describe the computa-
tion of the two primary components of competitiveness: (1)
the pairwise coverage V q

i,j of a query that includes binary, cat-
egorical, ordinal or numeric features, and (2) the percentage
p(q) of users represented by each query q.

2.1 Pairwise Coverage
We begin by defining the pairwise coverage of a single
feature f . We then define the pairwise coverage of an entire
query of features q.
Definition 2. [Pairwise Feature Coverage]: We define the

pairwise coverage V f
i,j of a feature f by two items i, j as

the percentage of all possible values of f that can be
covered by both i and j. Formally, given the set of all
possible values V f for f , we define:

V f
i,j =

|{v ∈ V f : v∠f [i] ∧ v∠f [j]}|
|values(f)|

,

where v∠f [i] represents that v is covered by the value of
item i for feature f .

Next, we describe the computation of V f
i,j for different

types of features.
[Binary and Categorical Features]: Categorical features take
one or more values from a finite space. Examples of single-
value features include the brand of a digital camera or the
location of a restaurant. Examples of multi-value features
include the amenities offered by a hotel or the types of

cuisine offered by a restaurant. Any categorical feature can
be encoded via a set of binary features, with each binary fea-
ture indicating the (lack of) coverage of one of the original
feature’s possible values. In this simple setting, the feature
can be fully covered (if f [i] = f [j] = 1 or, equivalently,
f [i]× f [j] = 1), or not covered at all. Formally, the pairwise
coverage of a binary feature f by two items i, j can be
computed as follows:

V f
i,j = f [i]× f [j] (binary features) (2)

[Numeric Features]: Numeric features take values from a
pre-defined range. Henceforth, without loss of generality,
we consider numeric features that take values in [0, 1], with
higher values being preferable. The pairwise coverage of
a numeric feature f by two items i and j can be easily
computed as the smallest (worst) value achieved for f by
either item. For instance, consider two restaurants i, j with
values 0.8 and 0.5 for the feature food quality. Their pair-
wise coverage in this setting is 0.5. Conceptually, the two
items will compete for any customer who accepts a quality
≤ 0.5. Customers with higher standards would eliminate
restaurant j, which will never have a chance to compete for
their business. Formally, the pairwise coverage of a numeric
feature f by two items i, j can be computed as follows:

V f
i,j = min(f [i], f [j]) (numeric features) (3)

[Ordinal Features]: Ordinal features take values from a
finite ordered list. A characteristic example is the popular
five star scale used to evaluate the quality of a service or
product. For example, consider that the values of two items
i and j on the 5-star rating scale are ⋆⋆ and ⋆⋆⋆, respectively.
Customers that demand at least 4 stars will not consider
either of the two items, while customers that demand at
least 3 stars will only consider item j. The two items will
thus compete for all customers that are willing to accept 1
or 2 stars. Therefore, as in the case of numeric features, the
pairwise coverage for ordinal features is determined by the
worst of the two values. In this example, given that the two
items compete for 2 of the 5 levels of the ordinal scale (1 and
2 stars), their competitiveness is proportional to 2/5 = 0.4.
Formally, the pairwise coverage of an ordinal feature f by
two items i, j can be computed as follows:

V f
i,j =

min(f [i], f [j])

|V f |
(ordinal features) (4)

Pairwise coverage of a feature query: We now discuss
how coverage can be extended to the query level. Figure 2
visualizes a query q that includes two numeric features f1
and f2. The figure also includes two competitive items i and
j, positioned according to their values for the two features:
f1[i] = 0.3, f2[i] = 0.3, f1[j] = 0.2, and f2[j] = 0.7. We
observe that the percentage of the 2-dimensional space that
each item covers is equivalent to the area of the rectangle
defined by the beginning of the two axes (0, 0) and the
item’s values for f1 and f2. For example, the covered area
for item i is 0.3×0.3 = 0.09, equal to 9% of the entire space.
Similarly, the pairwise coverage provided by both items is
equal to 0.2× 0.3 = 0.06 (i.e. 6% of the market).

Per our example, the pairwise coverage of a given query
q by two items i, j can be measured as the volume of the
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Fig. 2: Geometric interpretation of pairwise coverage

hyper-rectangle defined by the pairwise coverage provided
by the two items for each feature f ∈ q. Formally:

V q
i,j =

∏
f∈q

V f
i,j (5)

Eq. 5 allows us to compute the pairwise coverage of
any query of features, as required by the definition of
competitiveness in Eq. 1.

2.2 Estimating Query Probabilities
The definition of competitiveness given in Eq. 1 considers
the probability p(q) that a random customer will be repre-
sented by a specific query of features q, for every possible
query q ∈ 2F . In this section, we describe how these proba-
bilities can be estimated from real data. Feature queries are a
direct representation of user preferences. Ideally, we would
have access to the query logs of the platform’s (e.g. Ama-
zon’s or TripAdvisor’s) search engine. In practice, however,
the sensitive and proprietary nature of such information
makes it very hard for firms to share publicly. Therefore, we
design an estimation process that only requires access to an
abundant resource: customer reviews. Each review includes
a customer’s opinions on a particular subset of features of
the reviewed item. Extant research has repeatedly validated
the use of reviews to estimate user preferences with respect
to different features in multiple domains, such as phone
apps [14], movies [15], electronics [16], and hotels [17].

A trivial approach would be to estimate the demand for
each feature separately, and then aggregate the individual
estimates at the subset level. However, this approach as-
sumes feature independence, a strong assumption that would
first have to be validated across domains. To avoid this
assumption and capture possible feature correlations, we
consider all the features mentioned in each review as a
single query. We then compute the frequency of each query
q in our review corpus R, and divide it by the sum of the
frequencies of all queries. This gives us an estimate of the
probability that a random user will be interested in exactly
the set of features includes in q. Formally:

p(q) =
freq(q,R)∑

q∈2F

freq(q′,R)
(6)

Ideally, we would have access to the set of requirements
of every possible customer in existence. The maximum like-

lihood estimate of Eq. 6 would then compute the exact oc-
currence probability of any query q. While this type of global
access is unrealistic, Eq. 6 can still deliver accurate estimates
if the number of reviews in R is large enough to accurately
represent the customer population. The usefulness of the
estimator is thus determined by a simple question: how many
reviews do we need to achieve accurate estimates? We address
this question in Section 5.7 of the experiments, where we
present our results on datasets from different domains.

2.3 Extending our Competitiveness Definition

Feature Uniformity: Our competitiveness definition as-
sumes that user requirements are uniformly distributed
within the value space of each feature. This assumption
allows us to build a computational model for competitive-
ness, but in practice it may not always be true. For instance,
the number of users demanding quality in [0, 0.1] might be
different than those demanding a value in [0.4, 0.5]. More-
over, for lack of more accurate information, it provides a
conservative lower bound of our model’s true effectiveness:
having access to the distribution of interest within each
feature could only improve the quality of our results.

If such information was indeed available, then the naive
approach would be to consider all possible interest intervals
combinations for all possible queries. Henceforth, we refer
to these as extended queries. Clearly, the number of possible
extended queries is exponential and renders the compu-
tational cost of any evaluation algorithm prohibitive. This
limitation can be addressed by organizing the dataset into a
multi-dimensional grid, where each feature represents a dif-
ferent dimension. Each cell in the grid represents a different
extended query (i.e. a set of features and an interest interval
for each feature). We can then compute the competitiveness
between two items by simply counting the number of data
points that fall in the cells that they can both cover.

We can also precompute the sums of each cell offline
with the prefix-sum array technique [18], as well as reduce
the space complexity via approximations [19], [20] or multi-
dimensional histograms [21], [22]. A parameter of the grid-
construction process is the cell size, with larger cells sac-
rificing accuracy for the sake of efficiency. In practice, this
parameter will be determined by the granularity of the input
data, as well as the practitioner’s computational constraints.
Feature Importance: A second assumption of our compet-
itiveness definition is that all the features in a query q are
equally important. However, a user who submits the query
q = (f1, f2) may care more about f1 than for f2. As with the
case of feature uniformity, the consideration of such weights
requires the availability of appropriate data that is rarely
available in practice. Nonetheless, we can address this limi-
tation by extending our definition of pairwise coverage. For
instance, consider that the feature weights are in [0, 1] and
that the weights for f1 and f2 are w1 = 0.8 and w2 = 0.4,
respectively. We are then given two items i, j such that:
f1[i] = 0.5, f2[i] = 0.3, f1[j] = 0.5, f2[j] = 0.6. As per our
initial definition, the pairwise coverage of the 2-dimensional
space by the two items is min(0.5, 0.5) × min(0.3, 0.6) =
0.5 × 0.3 = 0.15. If we consider the feature weights, the
computation becomes: (w1 × 0.5) × (w2 × 0.3) = 0.048.
Formally, this extension translates to the introduction of the
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feature weight as a multiplier for the right-hand side of
Eq. 3. Note that, while this example includes only numeric
features, the same extension for categorical and ordinal
attributes trivially follows.

3 FINDING THE TOP-K COMPETITORS

Given the definition of the competitiveness in Eq. 1, we
study the natural problem of finding the top-k competitors
of a given item. Formally:
Problem 1. [Top-k Competitors Problem]: We are presented

with a market with a set of n items I and a set of features
F . Then, given a single item i ∈ I , we want to identify
the k items from I that maximize CF (i, ·).

A naive algorithm would compute the competitiveness
between i and every possible candidate. The complexity of
this brute force method is clearly Θ(2|F| × n2 × logK),
which can be easily dominated by the powerset factor and,
as we demonstrate in our experiments, is impractical for
large datasets. One option could be to perform the naive
computation in a distributed fashion. Even in this case,
however, we would need one thread for each of the n2

pairs. This is far from trivial, if one considers that n could
measure in the tens of thousands. In addition, a naive
MapReduce implementation would face the bottleneck of
passing everything through the reducer to account for the
self-join included in the computation. In practice, the self-
join would have to be implemented via a customized tech-
nique for reduce-side joins, which is a non-trivial and highly
expensive operation [23].

These issues motivate us to introduce CMiner, an effi-
cient exact algorithm for Problem 1. Except for the creation
of our indexing mechanism, every other aspect of CMiner
can also be incorporated in a parallel solution.

First, we define the concept of item dominance, which will
aid us in our analysis:
Definition 3. [Item Dominance]: Consider a market with a

set of items I and a set of features F . Then, we say that
an item i ∈ I dominates another item j ∈ I , if f [i] ≥ f [j]
for every feature f ∈ F .

Conceptually, an item dominates another if it has better or
equal values across features. We observe that, per Eq. 1, any
item i that dominates j also achieves the maximum possible
competitiveness with j, since it can cover the requirements
of any customer covered by j. This motivates us to utilize
the skyline of the entire set of items I . The skyline is a well-
studied concept that represents the subset of points in a
population that are not dominated by any other point [24].
We refer to the skyline of a set of items I as Sky(I). The
concept of the skyline leads to the following lemma:
Lemma 1. Given the skyline Sky(I) of a set of items I and

an item i ∈ I , let Y contain the k items from Sky(I) that
are most competitive with i. Then, an item j ∈ I can
only be in the top-k competitors of i, if j ∈ Y or if j is
dominated by one of the items in Y .

We present the proof of Lemma 1 in Appendix B.
Lemma 1 verifies that we do not need to consider the

entire set of candidates in order to find the top-k competi-
tors. This motivates us to construct the skyline pyramid, a

structure that greatly reduces the number of items that need
to be considered. We refer to the algorithm used to construct
the skyline pyramid as PyramidFinder. The input to
PyramidFinder is the set of items I . The output is the
skyline pyramid DI . The algorithm relies on the extraction
of the skyline layers of the dataset, using a modified version
of BBS [25], [26]. Each item from the ith skyline layer is
then assigned an inlink from all items of the (i − 1)th level
that dominate it. We present the complete pseudocode and
complexity analysis of the algorithm in Appendix C.
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I4 I1 0
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I2

I5I1

I6 I3

I7

I4 I1 0I2

I5I1

I9I8

I6

I7
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Fig. 3: The left side shows the dominance graph for a set
of items. An edge Ii → Ij means that Ii dominates Ij . The
right side of the figure shows the skyline pyramid.

The CMiner Algorithm: Next, we present CMiner, an exact
algorithm for finding the top-k competitors of a given item.
Our algorithm makes use of the skyline pyramid in order
to reduce the number of items that need to be considered.
Given that we only care about the top-k competitors, we
can incrementally compute the score of each candidate and
stop when it is guaranteed that the top-k have emerged. The
pseudocode is given in Algorithm 1.

Discussion of CMiner: The input includes the set of items
I , the set of features F , the item of interest i, the number k
of top competitors to retrieve, the set Q of queries and their
probabilities, and the skyline pyramid DI . The algorithm
first retrieves the items that dominate i, via masters(i) (line
1). These items have the maximum possible competitiveness
with i. If at least k such items exist, we report those and
conclude (lines 2-4). Otherwise, we add them to TopK and
decrement our budget of k accordingly (line 5). The variable
LB maintains the lowest lower bound from the current top-
k set (line 6) and is used to prune candidates. In line 7, we
initialize the set of candidates X as the union of items in the
first layer of the pyramid and the set of items dominated
by those already in the TopK. This is achieved via calling
GETSLAVES(TopK,DI). In every iteration of lines 8-17,
CMiner feeds the set of candidates X to the UPDATETOPK()
routine, which prunes items based on the LB threshold. It
then updates the TopK set via the MERGE() function, which
identifies the items with the highest competitiveness from
TopK ∪ X . This can be achieved in linear time, since both
X and TopK are sorted. In line 13, the pruning threshold
LB is set to the worst (lowest) score among the new TopK .
Finally, GETSLAVES() is used to expand the set of candidates
by including items that are dominated by those in X .

Discussion of UPDATETOPK(): This routine processes the
candidates in X and finds at most k candidates with the
highest competitiveness with i. The routine utilizes a data
structure localTopK, implemented as an associative array:
the score of each candidate serves as the key, while its id
serves as the value. The array is key-sorted, to facilitate
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Algorithm 1 CMiner
Input: Set of items I, Item of interest i ∈ I, feature space F ,
Collection Q ∈ 2F of queries with non-zero weights, skyline
pyramid DI , int k
Output: Set of top-k competitors for i

1: TopK ← masters(i)
2: if ( k ≤ |TopK| ) then
3: return TopK
4: end if
5: k ← k − |TopK|
6: LB ← −1
7: X ←GETSLAVES(TopK,DI) ∪ DI [0]
8: while ( |X | != 0 ) do
9: X ← UPDATETOPK(k, LB,X )

10: if ( |X | != 0 ) then
11: TopK ←MERGE(TopK,X )
12: if ( |TopK| = k ) then
13: LB ←WORSTIN(TopK)
14: end if
15: X ←GETSLAVES(X ,DI)
16: end if
17: end while
18: return TopK

19: Routine UPDATETOPK(k, LB, X )
20: localTopK ← ∅
21: low(j)← 0, ∀j ∈ X .
22: up(j)←

∑
q∈Q

p(q)× V q
j,j , ∀j ∈ X .

23: for every q ∈ Q do
24: maxV ← p(q)× V q

i,i
25: for every item j ∈ X do
26: up(j)← up(j)−maxV + p(q)× V q

i,j
27: if ( up(j) < LB ) then
28: X ← X \ {j}
29: else
30: low(j)← low(j) + p(q)× V q

i,j
31: localTopK.update(j, low(j))
32: if ( |localTopK| ≥ k ) then
33: LB ←WORSTIN(localTopK)
34: end if
35: end if
36: end for
37: if (|X | ≤ k ) then
38: break
39: end if
40: end for
41: for every item j ∈ X do
42: for every remaining q ∈ Q do
43: low(j)← low(j) + p(q)× V q

i,j
44: end for
45: localTopK.update(j, low(j))
46: end for
47: return TOPK(localTopK)

the computation of the k best items. The structure is au-
tomatically truncated so that it always contains at most
k items. In lines 21-22 we initialize the lower and upper
bounds. For every item j ∈ X , low(j) maintains the current
competitiveness score of j as new queries are considered,
and serves as a lower bound to the candidate’s actual
score. Each lower bound low(j) starts from 0, and after the
completion of UPDATETOPK(), it includes the true competi-
tiveness score CF (i, j) of candidate j with the focal item i.
On the other hand, up(j) is an optimistic upper bound on j’s
competitiveness score. Initially, up(j) is set to the maximum
possible score (line 22). This is equal to

∑
q∈Q p(q) × V q

i,i,
where V q

i,i is simply the coverage provided exclusively by
i to q. It is then incrementally reduced toward the true
CF (i, j) value as follows. For every query q ∈ Q, maxV

holds the maximum possible competitiveness between item
i and any other item for that query, which is in fact the
coverage of i with respect to q. Then, for each candidate
j ∈ X , we subtract maxV from up(j) and then add to it
the actual competitiveness between i and j for query q. If
the upper bound up(j) of a candidate j becomes lower than
the pruning threshold LB, then j can be safely disqualified
(lines 27-29). Otherwise, low(j) is updated and j remains in
consideration (lines 30-31). After each update, the value of
LB is set to the worst score in localTopK (lines 32-33), to
employ stricter pruning in future iterations.

If the number of candidates |X | becomes less or equal to
k (line 37), the loop over the queries comes to a halt. This
is an early-stopping criterion: since our goal is to retrieve
the best k candidates in X , having |X | <= k means that all
remaining candidates should be returned. In lines 41-46 we
complete the competitiveness computation of the remaining
candidates and update localTopk accordingly. This takes
place after the completion of the first loop, in order to avoid
unnecessary bound-checking and improve performance.
Complexity: If the item of interest i is dominated by at
least k items, then these will be returned by masters(i).
This step can be done in O(k), by iteratively retrieving k
items that dominate i. Otherwise, the complexity of CMiner
is controlled by UPDATETOPK(), which depends on the
number of items in the candidate set X . In its simplest form,
in the k-th call of the method, the candidate set contains
the entire k-th skyline layer, DI [k]. According to Bentley
et al. [27], for n uniformly-distributed d-dimensional data
points (items), the expected size of the skyline (1st layer)
is |DI [0]| = Θ( ln

d−1n
(d−1)! ). UPDATETOPK() will be called at

most k times, each time fetching (at least) 1 new item,
meaning that we will evaluate O(k ∗ lnd−1n

(d−1)! ) items. For
each candidate, we need to iterate over the |Q| queries and
update the TopK structure with the new score, which takes
O(logk) time using a Red-Black tree, for a total complexity
of O(|Q| ∗ k ∗ logk ∗ lnd−1n

(d−1)! ). However, as we discuss next,
this is a pessimistic analysis based on the naive assumption
that each of the k layers will be considered entirely.

In practice, with the exception of the first layer, we only
need to check a small fraction of the candidates in the
skyline layers. For instance, in a uniform distribution with
consecutive layers of similar size, the number of points to
be considered will be in the order of k, since links will be
evenly distributed among the skyline points. As we only
expand the top-k items in each step, approximately k new
items will be evaluated next, making the cost of UPDATE-
TOPK() in subsequent calls O(|Q|∗k ∗ logk). Given that this
cost is paid for each of the (at most) k−1 iterations after the
first one, the total cost becomes O(|Q|∗(k2+ lnd−1n

(d−1)! )∗ logk).
As we show in our experiments, the actual distributions
found in real datasets allow for much faster computations.
In the following section, we describe several speed-ups that
can achieve significant savings in practice.

In terms of space, the UPDATETOPK() method accepts
|X | items as input and operates on that set alone, resulting
in O(|X |) space. For each item in X , we maintain its lower
and upper bound, which is still O(|X |). As we iterate over
the queries, we update those values and discard items,
reducing the required space, bringing it closer to O(k). Since
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the TopK structure always contains k entries, the space of
CMiner is determined by X , which is at its maximum when
we retrieve the first skyline layer (line 7). Our assumption
that the primary skyline fits in memory is reasonable and
shared by prior works on skyline algorithms [24].

4 BOOSTING THE CMINER ALGORITHM

Next, we describe several improvements that we have ap-
plied to CMiner in order to achieve computational savings
while maintaining the exact nature of the algorithm.

4.1 Query Ordering
Our complexity analysis is based on the premise that
CMiner evaluates all queries Q for each candidate item j.
However, this assumption naively ignores the algorithm’s
pruning ability, which is based on using lower and upper
bounds on competitiveness scores to eliminate candidates
early. Next, we show how to greatly improve the algorithm’s
pruning effectiveness by strategically selecting the process-
ing order of queries (line 23 of CMiner).

CMiner uses the following update rules for the lower
and upper bounds for a candidate j:

low(j)← low(j) + p(q)× V q
i,j (7)

up(j)← up(j)− p(q)× V q
i,i + p(q)× V q

i,j (8)

By expanding the sequences and using the initial values
low(j) = 0 and up(j) = CF (i, i), we can re-write the
bounds:

lowm(j) =
m∑
1

p(qm)× V qm
i,j

upm(j) = CF (i, i)−
m∑
1

p(qm)× V qm
i,i +

m∑
1

p(qm)× V qm
i,j ,

where lowm(j) and upm(j) are the values of the bounds
after considering the mth query qm. We can then define a
recursive function T (j) = up(j)− low(j) as follows:

T (j)← T (j)− p(q)× V q
i,i (9)

T (j) captures the margin of error for the competitiveness
between the item of interest i and a candidate j. As more
queries are evaluated and the two bounds are updated, the
margin decreases. Finally, it becomes equal to zero when we
have the final CF (i, j) score. We hypothesize that the ability
to minimize this margin faster can increase the number of
pruned candidates due to the existence of stricter bounds in
early iterations. Given Eq. 7 and 8, the value of T (j) after
considering m queries can be re-written as follows:

Tm(j) = CF (i, i)−
m∑
ℓ=1

p(qℓ)× V qℓ
i,i , (10)

where qℓ is the ℓth query processed by the algorithm. Given
Eq. 10, it is clear that we can optimally minimize the margin
between the lower and upper bounds on the competitive-
ness of a candidate by processing queries in decreasing
order of their p(q) × V q

i,i values. We refer to this ordering
scheme as COV. We evaluate the computational savings
achieved by COV in Section 5.4 of our experiments, where
we also compare it with alternative approaches.

4.2 Improving UPDATETOPK() and GETSLAVES()

In this section we describe several improvements to the
CMiner’s two main routines. We implement all of these
improvements into an enhanced algorithm, which we refer
to as CMiner++. We include this version in our experimental
evaluation, where we compare its efficiency with that of
CMiner, as well as to that of other baselines.

Even though CMiner can effectively prune low quality
candidates, a major bottleneck within the UPDATETOPK()
function is the computation of the final competitiveness
score between each candidate and the item of interest i (lines
41-46). Speeding up this computation can have a tremen-
dous impact on the efficiency of our algorithm. Next, We il-
lustrate this with an example. Assume that items are defined
in a 4-dimensional space with features f1, f2, f3, f4. Without
loss of generality, we assume that all features are numeric.
We also consider 3 queries q1 = (f1, f2, f3), q2 = (f2, f3, f4)
and q3 = (f2, f4), with probabilities w(q1), w(q2), and
w(q3), respectively. In order to compute the competitiveness
between two items i and j, we need to consider all queries
and, according to Eq. 5, compute V q1

i,j = V f1
i,j × V f2

i,j × V f3
i,j ,

V q2
i,j = V f2

i,j ×V
f3
i,j ×V

f4
i,j , and V q3

i,j = V f2
i,j ×V

f4
i,j . Given that the

three items include common sequences of factors, we would
like to avoid repeating their computation, when possible.
First, we sort all features according to their frequency in
the given set of queries. In our example, the order is:
f2, f3, f4, f1. In this order, (f2, f3) becomes a common prefix
for q1 and q2, whereas f2 is a common prefix for all 3 queries.
We then build a prefix-tree to ensure that the computation of
such common prefixes is only completed once. For instance,
the computation of V f2

i,j × V f3
i,j is done only once and used

for both q1 and q2. The tree is used in lines 41-46 of CMiner
to expedite the computation of the competitiveness between
the item of interest and the remaining candidates in X . This
improvement is inspired by Huffman encoding, whereby
frequent symbols (features in our case) are closer to the
root, so that they are encoded with fewer bits. Note that
Huffman encoding is optimal if the symbols independent of
each other, as is the case in our own setting.

The GETSLAVES() method is used to extend the set of
candidates by including the items that are dominated by
those in a provided set (lines 7 and 15). Henceforth, we refer
to this as the dominator set. A naive implementation would
include all items that are dominated by at least one item
in the dominator set. However, as stated in Lemma 1, if an
item j is dominated by an item j′, then the competitiveness
of j with any item of interest cannot be higher than that
of j′. This implies that items that are dominated by the k-
th best item of the given set will have a competitiveness
score lower than the current k-th score and will thus not
be included in the final result. Therefore, we only need
to expand the top k − 1 items and only those that have
not been expanded already during a previous iteration. In
addition, the GETSLAVES() method can be further improved
by using the lower bound LB (the score of the k-th best
candidate) as follows: instead of returning all the items that
are dominated by those in the dominator set, we only have
to consider a dominated item j if CF (j, j) > LB. This is
due to the fact that the competitiveness between i and j
is upper-bounded by the minimum coverage achieved by
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either of the two items (over all queries), i.e., CF (i, j) ≤
min(CF (i, i), CF (j, j)). Therefore, an item with a coverage
≤ LB cannot replace any of the items in the current TopK .

5 EXPERIMENTAL EVALUATION

In this section we describe the experiments that we con-
ducted to evaluate our methodology. All experiments were
completed on an desktop with a Quad-Core 3.5GHz Proces-
sor and 2GB RAM.

5.1 Datasets and Baselines
Our experiments include four datasets, which were col-
lected for the purposes of this project. The datasets were
intentionally selected from different domains to portray the
cross-domain applicability of our approach. In addition to
the full information on each item in our datasets, we also
collected the full set of reviews that were available on the
source website. These reviews were used to (1) estimate
queries probabilities, as described in Section 2.2 and (2)
extract the opinions of reviewers on specific features.The
highly-cited method by Ding et al. [28] is used to convert
each review to a vector of opinions, where each opinion
is defined as a feature-polarity combination (e.g. service+,
food-). The percentage of reviews on an item that express
a positive opinion on a specific feature is used as the
feature’s numeric value for that item. We refer to these as
opinion features. Table 4 includes descriptive statistics for
each dataset, while a detailed description is provided below.

CAMERAS: This dataset includes 579 digital cameras from
Amazon.com. We collected the full set of reviews for each
camera, for a total of 147192 reviews. The set of features
includes the resolution (in MP), shutter speed (in seconds),
zoom (e.g. 4x), and price. It also includes opinion features
on manual, photos, video, design, flash, focus, menu options, lcd
screen, size, features, lens, warranty, colors, stabilization, battery
life, resolution, and cost.

HOTELS: This dataset includes 80799 reviews on 1283 hotels
from Booking.com. The set of features includes the facili-
ties,activities, and services offered by the hotel. All three of
these multi-categorical features are available on the website.
The dataset also includes opinion features on location, ser-
vices, cleanliness, staff, and comfort.

RESTAURANTS: This dataset includes 30821 reviews on 4622
New York City restaurants from TripAdvisor.com. The set of
features for this dataset includes the cuisine types and meal
types (e.g. lunch, dinner) offered by the restaurant, as well as
the activity types (e.g. drinks, parties) that it is good for. All
three of these multi-categorical features are available on the
website. The dataset also includes opinion features on food,
service, value-for-money, atmosphere, and price.

RECIPES: This dataset includes 100000 recipes from
Sparkrecipes.com. It also includes the full set of reviews on
each recipe, for a total of 21685 reviews. The set of features
for each recipe includes the number of calories, as well as
the following nutritional information, measured in grams:
fat, cholesterol, sodium, potassium, carb, fiber, protein, vitamin
A, vitamin B12, vitamin C, vitamin E, calcium, copper, folate,

magnesium, niasin, phosphorus, riboflavin, selenium, thiamin,
zinc. All information is openly available on the website.

TABLE 4: Dataset Statistics

Skyline
Dataset #Items #Feats. #Subsets Layers

CAMERAS 579 21 14779 5
HOTELS 1283 8 127 5

RESTAURANTS 4622 8 64 12
RECIPES 100000 22 133 22

For each dataset, the 2nd, 3rd, 4th and 5th columns
include the number of items, the number of features, the
number of distinct queries, and the number of layers in
the respective skyline pyramid, respectively. In order to
conclude the description of our datasets, we present some
statistics on the skyline-pyramid structure constructed for
each corpus. Figure 4 shows the distribution of items in the
first 6 skyline layers of each dataset. We observe that, for
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Fig. 4: Cumulative distribution of items across the first 6
layers of the skyline pyramid.

all datasets, nearly 99% of the items can be found within
the first 4 layers, with the majority of those falling within
the first 2 layers. This is due to the large dimensionality
of the feature space, which makes it difficult for items to
dominate one another. As we show in our experiments, the
skyline pyramid enables CMiner to clearly outperform the
baselines with respect to computational cost. This is despite
the high concentration of items within the first layers, since
CMiner can effectively traverse the pyramid and consider
only a small fraction of these items.
Baselines: We compare CMiner with two baselines. The
Naive basline, is the brute-force approach described in Sec-
tion 3. The second is a clustering-based approach that first
iterates over every query q and identifies the set of items that
have the same value assignment for the features in q and
places them in the same group. The algorithm then iterates
over the reported groups and updates the pairwise coverage
Vq
i,j for the item of interest i and an arbitrary item j from

each group (it can be any item, since they all have the same
values with respect to q). The computed coverage is then
used to update the competitiveness of all the items in the
group. The process continues until the final competitiveness
scores for all items have been computed. Assuming that we
have a collection of items I , a set of queries Q, and at most
M groups per query, the complexity is O( |I| * M * |Q| ).
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Obviously, when each group is a singleton, the algorithm is
equivalent to the brute-force approach. We refer to this tech-
nique as GMiner. We also evaluate our enhanced CMiner++
algorithm, that implements the speedups of Section 4.2.
Finally, unless stated otherwise, we always experiment with
k ∈ {3, 10, 50, 150, 300}.

5.2 Evaluating comparative methods
Previous work on competitor mining has been based on
comparative evidence between two items, found in different
types of text data. However, these approaches are based
on the assumption that such comparative evidence can be
found in abundance in the available data. In this experi-
ment, we evaluate this assumption on our four datasets. For
every pair of items in each dataset, we report (1) the number
of reviews that mention both items and (2) the number of
reviews that include a direct comparison between the two
items. We extract such comparative evidence based on the
union of “competitive evidence” lexicons used by previous
work [8], [9], [10], [11], [12], [13]. Given two items i and j,
the lexicon includes the following comparative patterns: i in
contrast to j, i unlike j, i compared with j, compare i to j, i beat(s)
j, i exceeds j, i outperform(s) j, prefer i to j, i than j , i same as j,
i similar to j, i superior to j, i better than j, i worse than, i more
than j, i less than j, i vs j. We present the results in Table 5,
in which we report the average number of findings for each
pair of items in each dataset.

TABLE 5: Evidence on Comparative Methods

Co-occurrence Comparative

Cameras 1.7 1.2
Hotels 0.06 0.02
Restaurants 0.09 0.04
Recipes 0 0

The results verify that methods based on comparative
evidence are completely ineffective in many domains. In
fact, even for CAMERAS, the dataset with the largest count,
evidence was limited to a very small number of pairs.
Specifically, the expected number of times that any two
specific cameras appear together in the same review is 1.7.
In addition, only 1.2 of these co-occurrence were actually
comparative, a number that is far too low to allow for a
confident evaluation of competitiveness. This demonstrates
the sparseness of comparative evidence in real data, which
greatly limits the applicability of any approach that is based
on such evidence. These findings further motivate our work,
which has no need for this type of information.

5.3 Computational Time
In this experiment we compare the speed of CMiner with
that of the two baselines (Naive and GMiner), as well as
with that of the enhanced CMiner++ algorithm. Specifically,
we use each algorithm to compute the set of top-k competi-
tors for each item in our datasets. The results are shown in
Figure. 5. Each plot reports the average time, in seconds, per
item (y-axis) against the various k values (x-axis).

The figures motivate some interesting observations.
First, the Naive algorithm consistently reports the same

computational time regardless of k, since it naively com-
putes the competitiveness of every single item in the corpus
with respect to the target item. Thus, any trivial variations
in the required time are due to the process of maintaining
the top-k set. In general, Naive is outperformed by the two
other algorithms, and is only competitive for very large
values of k for the HOTELS dataset. The latter case can
be attributed to the small number of queries and items
included in this dataset, which limit the ability of more
sophisticated algorithms to significantly prune the space
when the number of required competitors is very large.

For the CAMERAS dataset, CMiner and GMiner, ex-
hibit almost identical running times. This is due to (1)
the very large number of distinct queries for this dataset
(14779), which serves as a computational bottleneck for
CMiner and (2) the highly clustered structure of the item
population, which includes 579 items. A deeper analy-
sis reveals that GMiner identifies and average of 443.63
item groups (i.e. groups of identical items) per query. This
means that the algorithm saves (on expectation) a total of
(579 − 443) × 14779 = 2009944 coverage computations
per query, allowing it to be competitive to the otherwise
superior CMiner. In fact, for the other datasets, CMiner
displays a clear advantage. This advantage is maximized
for the RECIPES dataset, which is the most populous of the
four in terms of included items. The experiment on this
dataset also illustrates the scalability of the approach with
respect to k. For the HOTELS and RESTAURANTS datasets,
even though the computational time of CMiner appears
to rise as k increases for the other three datasets, it never
goes above 0.035 seconds. For the CAMERAS dataset, the
large number of considered queries has an adverse of the
scalability of CMiner, since it results in larger number of
required computations for larger values of k. This finding
motivates us to consider pruning the set of queries by
eliminating those that have a low probability. We explore
this direction in the experiment presented in Section 5.6.

Finally, we observe that the enhanced CMiner++ algo-
rithm consistently outperformed all the other approaches,
across datasets and values of k. The advantage of CMiner++
is increased for larger values of k, which allow the algorithm
to benefit from its improved pruning. This verifies the utility
of the improvements described in Section 4.2 and demon-
strates that effective pruning can lead to a performance that
far exceeds the worst-case complexity analysis of CMiner.

5.4 Ordering Efficiency

In Section 4.1 we introduced the COV ordering scheme,
which determines the processing order of queries by
CMiner. Next, we demonstrate COV’s superiority over
the P-INC and P-DCR oredring schemes, which process
queries in increasing and decreasing probability order, re-
spectively. For each approach, we compute (1) the number
of pairwise query coverages V q

i,j that need to be computed
(line 25 of Algorithm 1) and (2) the number of distinct
queries that need to be processed (line 22 of Algorithm 1)
to compute the top-k competitors of each item. The results
are shown in Figures 6 and 13 (Appendix D). The x-axis
of each plot holds the value of k, while the y-axis holds the
average number of processed queries / coverages.
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Fig. 5: Average time (per item) to compute top-k competitors for each dataset.
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Fig. 6: Average number of pairwise coverage computations under different ordering schemes.

We observe a consistent advantage for COV, across
datasets and values of k. This verifies that COV increases
the efficiency of CMiner by rapidly eliminating candidates
that fail to cover important queries. We observe that this
advantage is more profound for RECIPES and CAMERAS.
This is a reasonable outcome, as the computational bottle-
neck of CMiner lies with the nested loop structure of the
UPDATETOPK() routine, which iterates over all queries and
over all items for each query (lines 22-39 of Algorithm 1).
Therefore, datasets with a large number of items (RECIPES)
or queries (CAMERAS) can benefit the most from the ability
of CMiner to quickly eliminate candidates.

5.5 Pruning Efficiency

Much of CMiner’s efficiency stems from its ability to dis-
card or selectively evaluate candidates. We illustrate this
in Figure 7. The figure includes one set of bars for each
dataset, with each bar representing a different value of k
(k ∈ {3, 10, 50, 150, 300}, in the order shown).

The white portion of each bar (post-pruned) represents
the average number of items pruned within UPDATETOPK()
(line 28). There, an item is pruned if, as we go over the set of
queries Q, its upper bound reaches a value that is lower than
LB (the lowest competitor in the current top-K). The black
portion of each bar (pre-pruned) represents the average
number of items that were never added to the candidate
set X because their best-case scenario (self coverage) was
apriori worse than LB. Therefore, they can be eliminated
and we do not have to consider their competitiveness in the
context of the queries. We explain this mechanism in detail
in the final paragraph of Section 4.2. Finally, the pattern-
filled portion (unpruned) at the top of each bar refers to
the average number of items that were fully evaluated in
their entirety (i.e. for all queries). We observe that the vast
majority of candidates is eliminated by one of the two types
of pruning that we consider here. The high number of pre-
pruned queries is particularly encouraging, as it implies the

highest computational savings. Finally, it is important to
note that these findings are consistent across datasets.
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Fig. 7: Pruning Effectiveness

5.6 Reducing the Number of Considered Queries
By default, CMiner considers all queries with a non-zero
probability, with each query representing a different market
segment. As larger segments are more likely to contribute
to the competitiveness of two items, an intuitive way to
speed up the algorithm is to ignore low-probability queries,
i.e. queries with frequency lower than a threshold T . We
repeat our experiment with T ∈ {1, 3, 5, 10, 15, 20} and
record the time required for each combination of (k, T ). The
results are shown in Figure 8, which includes a plot for each
dataset. The x-axis of each plot holds the different values of
k, while the y-axis holds the required computational time
in seconds. The plot includes one line for each value of T .
We also evaluate the quality of the results, using Kendall’s τ
coefficient [29] to compare the produced top-k lists with the
respective exact solution (i.e. T = 1). The results are shown
in Figure 9. For the plots in this figure, the y-axis holds
the computed Kendall τ values. For all plots, we report the
average values computed over all the items in each dataset.

For hotels and restaurants, query elimination does not
yield significant gains. On the other hand, for cameras, the
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Fig. 8: Computational times of CMiner for different values of the k and T parameters.
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Fig. 9: Kendall Tau values achieved by CMiner for different values of the k and T parameters.

runtime of CMiner drops as T increases. In fact, the algo-
rithm achieves increasingly higher savings as k increases.
For recipes, we observe significant savings even for small
values of T and k. A deeper study of the data reveals
that these discrepancies can be attributed to the number of
queries that they include. Specifically, as shown in Table 4,
the number of queries for the cameras dataset is two orders
of magnitude larger than that for the hotels and restaurants
datasets. As a result, CMiner has a low computational
cost for restaurants and hotels, even when all queries are
considered. However, for cameras, the large number of
queries serves as a significant computational bottleneck,
which is relieved as the value of T becomes higher and
less queries need to be considered. For the recipes dataset,
the improvement can be attributed to the number of items
(100K): By reducing the number of queries, processed in the
external loop of CMiner’s UPDATETOPK() routine (line 23
Algorithm 1), we also significantly reduce the executions of
the inner loop (line 25), which iterates over the large set of
items in this dataset.

The second observation is that, for all datasets except
recipes, CMiner achieves near-perfect results even for larger
values of T . This is based on the observed values of the
Kendall τ coefficient, which was consistently above 0.9 for
all evaluated combinations of the k and T parameters.
This is an encouraging finding, since it reveals a highly
appealing and practical tradeoff between the computational
efficiency and quality of CMiner. In addition, it is important
to note that the practice of reducing the size of number of
considered queries does not require any modifications to
the algorithm itself and can thus be applied with minimum
effort. A careful examination of the recipes dataset reveals
that the low correlation values can be attributed to the fact
that most queries have a low frequency and, in fact, their
frequency distribution is nearly uniform. As a result, even
a low value for the T threshold eliminates a large number
of queries and prevents CMiner from computing the exact
solution to the top-k problem. This finding reveals that, by

studying the frequency distribution of the queries in a given
dataset, we can make an informed decision on whether or
not eliminating low-frequency queries is advisable, as well
as on what the value of the threshold should be.

5.7 Convergence of Query Probabilities

In Section 2.2 we described the process of estimating the
probability of each query by mining large datasets of cus-
tomer reviews. The validity of this approach is based on
the assumption that the number of available reviews is
sufficient to allow for confident estimates. Next, we evaluate
this assumption as follows. First, we merge all the reviews in
each dataset into a single set, sort them by their submission
date, and split the sorted sequence into fixed-size segments.
We then iteratively append segments to the review corpusR
considered by Eq. 6 and re-compute the probability of each
query in the extended corpus. The vector of probabilities
from the ith iteration is then compared with that from the
(i−1)th iteration via the L1 distance: the sum of the absolute
differences of corresponding entries (i.e. the two estimates
for the same query in both vectors). We apply the process for
segments of 25 reviews. The results are shown in Figure 10.
The x-axis of each plot includes the number of reviews,
while the y-axis is the respective L1 distance.
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Based on our results, we see that all the datasets exhib-
ited near identical trends. This is an encouraging finding
with useful implications, as it informs us that any con-
clusions we draw about the convergence of the computed
probabilities will be applicable across domains. Second, the
figures clearly demonstrate the convergence of the com-
puted probabilities, with the reported L1 distance dropping
rapidly to trivial levels below 0.2, after the consideration of
less than 500 reviews. The convergence of the probabilities
is an especially encouraging outcome that (i) reveals a stable
categorical distribution for the preferences of the users over
the various queries, and (ii) demonstrates that only a small
seed of reviews, that is orders of magnitude smaller than the
thousands of reviews available in each dataset, is sufficient
to achieve an accurate estimation of the probabilities.

5.8 A User Study

In order to validate our definition of competitiveness, we
conduct a user study as follows. First, we select 10 random
item from each of our 4 datasets. We refer to these 10 items
as the seed. For each item i in the seed, we compute its com-
petitiveness with every other item in the corpus, according
to our definition. As a baseline, we also rank all the items
in the corpus based on their distance to i within the feature-
space of each dataset. The intuition behind this approach is
that highly similar items are also likely to be competitive.
The L1 distance was used for numeric and ordinal features,
and the Jaccard distance was used for categorical attributes.
We refer to this as the NN approach (i.e. Nearest Neighbor).
We then chose the two items with the highest score, the two
items with the lowest score, and two items from the middle
of the ranked list. This was repeated for both approaches, for
a total of 12 candidates per item in the seed (6 per approach).

We then created a user study on the online survey-site
kwiksurveys.com/. In total, the survey was taken by 20
different annotators. Each of the 10 seed items was paired
with each of its 12 corresponding candidates, for a total of
120 different pairs. The pairs were shown to the annotators
in a randomized order. Annotators had access to a table with
the values of each item for every feature, as well as a link to
the original source. For each pair, each annotator was asked
whether she would consider buying the candidate instead
of the seed item. The possible answers were “YES”, “NO”
and “NOT SURE”. Table 8 in Appendix F shows an example
of the pairs that were shown to the annotators.

Figure 11 contains the results of the user study. The
figure shows 3 pairs of bars. The left bar of each pair
corresponds to our approach, while the right bar to the NN
approach. The leftmost pair represents the user responses to
the top-ranked candidates for each approach. The pair in the
middle represents the responses to the candidates ranked in
the middle, and, finally, the pair on the right represents the
responses to the bottom-ranked candidates.

Each bar in Figure 11 captures the fraction of each of
the three possible responses. The lower, middle, and upper
part of the bar represent the “YES”, “NO” and “NOT SURE”
responses, respectively. For example, the first bar on the left
reveals that about 90% of the annotators would consider our
top-ranked candidates as a replacement for the seed item.
The remaining 10% was evenly divided between the “NO”
and “NOT SURE” responses.

The figure motivates multiple relevant observations.
First, we observe that the vast majority of the top-rank
competitors proposed by our approach were verified as
likely replacements for the seed item. These are thus verified
as strong competitors that could deprive the seed item from
potential customers and decrease its market share. On the
other hand, the top-ranked candidates of NN were often
rejected by the users, who did not consider these items to be
competitive. Both approaches exhibited their worst results
for the RECIPES dataset, even though the “YES” percent-
age of the top-ranked items by our method was almost
twice that of NN. The difficulty of the recipes domain is
intuitive, as users are less used to consider recipes in a
competitive setting. The middle-ranked candidates of our
approach attracted mixed responses from the annotators,
indicating that it was not trivial to determine whether the
item is indeed competitive or not. An interesting observa-
tion is that, for some of our datasets, the middle-ranked
candidates of NN were more popular than its top-ranked
ones, which implies that this approach fails to emulate the
way the users perceive the competitiveness between two
items. The bottom-ranked candidates of our approach were
consistently rejected, verifying their lack of competitiveness
to the seed item. The bottom-ranked items by the NN
approach were also frequently rejected, indicating that it is
easier to identify items that are not competitive to the target.

Finally, to further illustrate the difference between our
competitiveness model and the similarity-based approach,
we conducted the following quantitative experiment. For
each item i in a dataset, we retrieve its 300 top-ranked
competitors, as ordered by each of the two methods. We
then compute the Kendall τ and overlap of the two lists.
We report the average of these two quantities over all items
in the dataset. The results in Table 6 demonstrate that the
rankings of the two techniques are significantly different
both in their ordering and in the items that they contain.

In conclusion, the survey and our qualitative analysis
validate our definition of the competitiveness and demon-
strates that similarity is not an appropriate proxy for com-
petitiveness. These results complement the discussion that
we presented in Section 2, which includes a realistic example
of the shortcomings of the similarity-based paradigm.

TABLE 6: Comparing Competitiveness and NN.

Kendall τ #Commons
Avg StdDev Avg StdDev

Cameras -0.0658 0.281 181.886 49.922
Hotels 0.0438 0.2074 185.786 32.7872
Restaurants -0.36 0.1532 82.523 32.737
Recipes -0.642 0.133 14.524 30.804

6 RELATED WORK

This paper builds on and significantly extends our pre-
liminary work on the evaluation of competitiveness [30].
To the best of our knowledge, our work is the first to
address the evaluation of competitiveness via the analysis
of large unstructured datasets, without the need for direct
comparative evidence. Nonetheless, our work has ties to
previous work from various domains.
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Fig. 11: Results of the user study comparing our competitiveness paradigm with the Nearest-Neighbor approach.

Managerial Competitor Identification: The management
literature is rich with works that focus on how managers
can manually identify competitors. Some of these works
model competitor identification as a mental categorization
process in which managers develop mental representations
of competitors and use them to classify candidate firms [3],
[6], [31]. Other manual categorization methods are based
on market- and resource-based similarities between a firm
and candidate competitors [1], [5], [7]. Finally, managerial
competitor identification has also been presented as a sense-
making process in which competitors are identified based
on their potential to threaten an organizations identity [4].

Competitor Mining Algorithms: Zheng et al. [32] identify
key competitive measures (e.g. market share, share of wal-
let) and showed how a firm can infer the values of these
measures for its competitors by mining (i) its own detailed
customer transaction data and (ii) aggregate data for each
competitor. Contrary to our own methodology, this ap-
proach is not appropriate for evaluating the competitiveness
between any two items or firms in a given market. Instead,
the authors assume that the set of competitors is given
and, thus, their goal is to compute the value of the chosen
measures for each competitor. In addition, the dependency
on transactional data is a limitation we do not have.

Doan et al. explore user visitation data, such as the
geo-coded data from location-based social networks, as a
potential resource for competitor mining [33]. While they
report promising results, the dependence on visitation data
limits the set of domains that can benefit from this approach.

Pant and Sheng hypothesize and verify that competing
firms are likely to have similar web footprints, a phe-
nomenon that they refer to as online isomorphism [34]. Their
study considers different types of isomorphism between
two firms, such as the overlap between the in-links and out-
links of their respective websites, as well as the number
of times that they appear together online (e.g. in search
results or new articles). Similar to our own methodology,
their approach is geared toward pairwise competitiveness.
However, the need for isomorphism features limits its ap-
plicability to firms and make it unsuitable for items and
domains where such features are either not available or
extremely sparse, as is typically the case with co-occurrence
data. In fact, the sparsity of co-occurrence data is a serious
limitation of a significant body of work [8], [10], [11], [35]
that focuses on mining competitors based on comparative
expressions found in web results and other textual corpora.
The intuition is that the frequency of expressions like “Item
A is better than Item B” “or item A Vs. Item B” is indicative
of their competitiveness. However, as we have already

discussed in the introduction, such evidence is typically
scarce or even non-existent in many mainstream domains.
As a result, the applicability of such approaches is greatly
limited. We provide empirical evidence on the sparsity of
co-occurrence information in our experimental evaluation.

Finding Competitive Products: Recent work [36], [37], [38]
has explored competitiveness in the context of product de-
sign. The first step in these approaches is the definition
of a dominance function that represents the value of a
product. The goal is then to use this function to create items
that are not dominated by other, or maximize items with
the maximum possible dominance value. A similar line of
work [39], [40] represents items as points in a multidimen-
sional space and looks for subspaces where the appeal of the
item is maximized. While relevant, the above projects have
a completely different focus from our own, and hence the
proposed approaches are not applicable in our setting.

Skyline computation: Our work leverages concepts and
techniques from the extensive literature on skyline compu-
tation [24], [25], [41]. These include the dominance concept
among items, as well as the construction of the skyline
pyramid used by our CMiner algorithm. Our work also has
ties to the recent publications in reverse skyline queries [42],
[43]. Even though the focus of our work is different, we
intend to utilize the advances in this field to improve our
framework in future work.

7 CONCLUSION

We presented a formal definition of competitiveness be-
tween two items, which we validated both quantitatively
and qualitatively. Our formalization is applicable across
domains, overcoming the shortcomings of previous ap-
proaches. We consider a number of factors that have been
largely overlooked in the past, such as the position of
the items in the multi-dimensional feature space and the
preferences and opinions of the users. Our work introduces
an end-to-end methodology for mining such information
from large datasets of customer reviews. Based on our
competitiveness definition, we addressed the computation-
ally challenging problem of finding the top-k competitors
of a given item. The proposed framework is efficient and
applicable to domains with very large populations of items.
The efficiency of our methodology was verified via an exper-
imental evaluation on real datasets from different domains.
Our experiments also revealed that only a small number
of reviews is sufficient to confidently estimate the different
types of users in a given market, as well the number of users
that belong to each type.
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APPENDIX A
EXTENSION OF PREVIOUS WORK

This manuscript builds on our previous preliminary work
on the evaluation of competitiveness, published in the ACM
SIGKDD 2012 conference. In addition to including a sig-
nificantly improved write-up and a much more extensive
discussion of both our methods and results, the submitted
manuscript extends our previous work by introducing:

1) An updated motivation and description of the prob-
lems addressed by our work, including new infor-
mative examples and improved notation (Sections 1
and 2).

2) An extended section on related work, including a
discussion of papers from management and market-
ing science, as well as recent papers published after
the conference version of this manuscript (Section 6)

3) A formal proof of Lemma 1, which is critical for the
proposed methodology and was not included in the
conference version (Section 3).

4) An extended discussion of the time and space com-
plexity of the CMiner algorithm (Section 3).

5) A new algorithm, titled CMiner++. This algorithm,
which is now included in our experimental eval-
uation, implements a number of computational
speedups that increase the search and pruning ca-
pabilities of the previously proposed CMiner algo-
rithm and increase its scalability (Section 4.2).

6) A new experiment that includes the results of the
COV ordering scheme (named IC in the conference
version) on all four datasets considered by our
evaluation, as well as a comparison with other al-
ternatives. The experiment evaluates the scheme in
terms of both the number of required coverage com-
putations and the number of queries that need to
be considered, for a total of 8 plots. The conference
version only included the results for the coverage
computations for a single dataset (Section 5.4).

7) A new experiment that evaluates the ability of the
proposed algorithm to achieve high-quality results,
even when only a subset of the queries is consid-
ered. The experiment includes an evaluation of both
the quality of the results and the computational
savings that are recorded in such cases (Section 5.6).

8) A new experiment that evaluates the ability of the
proposed algorithm to achieve high-quality results,
even when only a subset of the candidate com-
petitors is considered. The experiment includes an
evaluation of both the quality of the results and
the computational savings that are recorded in such
cases (Section E).

9) A new experiment that evaluated the convergence
of the query probabilities required by our method-
ology, for all four datasets (Section 5.7).

10) A comparison with previous work on mining com-
petitors based on competitive evidence from text
(Section 5.2).

11) An extended user study that includes results on
all 4 datasets included in our evaluation: RECIPES,
CAMERAS, HOTELS, and RESTAURANTS (Section 5.8).

12) A new experiment that quantitatively evaluates the
pruning capability of the CMiner algorithm (Sec-
tion 5.5).

13) A new experiment that illustrates the difference
between competitiveness and similarity (added to
Section 5.8).

14) An extension of our definition of competitiveness
that considers (i) the non-uniformity of the distri-
bution of a user’s interest within the value space of
each feature, and (ii) the differences in importance
among the features included in the same user query
(Section 2.3)

APPENDIX B
PROOF OF LEMMA 1
Proof We will prove this by contradiction. Let j be an item
that is not included in Y and has a competitiveness CF (i, j)
with i that is higher or equal to at least one of the items
in Y . According to the lemma, we assume that j is not
dominated by any of the items in Y . Observe that j cannot
be in the skyline, since its competitiveness would then have
been enough to also include it in Y . Hence, it is guaranteed
to be dominated by at least one of the items in the skyline.
This means that there is an item j′ ∈ Sky(I) such that
CF (i, j

′) ≥ CF (i, j). However, since j has a greater or equal
competitiveness to that of at least one of the items in Y , j′

will also be included in Y . This leads to a contradiction,
since we assumed that none of the items in Y dominate j.

APPENDIX C
PSEUDOCODE AND COMPLEXITY ANALYSIS FOR
PyramidFinder

Algorithm 2 PyramidFinder

Input: Set of items I
Output: Dominance Pyramid DI

1: DI [0]← Sky(I)
2: Z ← I \ Skyline(I)
3: level← 1.
4: while Z is not empty do
5: DI [level]← Sky(Z)
6: for every item j ∈ DI [level] do
7: for every item i ∈ DI [level − 1] do
8: if i dominates j then
9: Add a link i→ j

10: break
11: end if
12: end for
13: end for
14: Z ← Z \ skyline(Z)
15: level← level + 1
16: end while

Space Complexity: Algorithm 2 describes the creation of
the pyramid indexing structure. In principle, the algorithm
simply rearranges the original data in skyline layers. There-
fore, any additional space required by the structure is due
to the edges added between data points of consecutive
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skyline layers (line 9). As is typical with skyline-related
problems [44], this depends greatly on the underlying data
distribution. Assuming n data points overall, if there is only
one skyline layer, then no additional information is stored.
In the worst case, we will need n2 additional space to store
the edges. This is extremely unlikely even in artificially
generated distributions [24]. On the other hand, if the data
were fully correlated, we would require Θ(n) space for the
edges. This is also unrealistic, as it implies a monopolistic
market.

Figure 12 provides an empirical analysis of the number
of edges stored per dataset, contrasting it to the theoretical
bounds of the worst possible and fully correlated cases,
discussed earlier. The space required to store the pyramid
structure is well below the limit of the correlated dataset.
This is related to both the high-dimensionality of the space
and the fact that we are dealing with non-monopolistic
settings.
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Time Complexity: Computationally, the algorithm has two
major parts: (i) finding the skyline layers and (ii) adding
the edges. The complexity is level times the complexity of
any state-of-the-art algorithm that the practitioner chooses
for skyline computation (we use BBS [25]), where level is
the number of skyline layers.

The standard approach to adding the edges is O(d ∗ n2),
where d is the dimensionality of the data, due to the
dominance checks. Lets assume that mi points exist in the
skyline of the i-th layer extracted by BBS, for a total of λ
layers. Adding edges between consecutive layers yields a
total runtime of

∑λ−1 mi∗mi+1. From the Cauchy-Schwarz
inequality, we know that

λ−1∑
(mi ∗mi+1) ≤

√
(
λ−1∑

m2
i ) ∗ (

λ−1∑
m2

i+1)

The left hand side is bounded and the upper bound
is achieved when all mi are equal. Given that mi’s are
integers, the true bound may not be always attainable, yet
it still holds that the maximum value is obtained when
mi = n

λ , or as best equally distributed as possible. By
plugging this result to the original cost function, the worst

runtime becomes a function of the number of layers, given
by

f(λ) =
λ−1∑

(
n

λ
)2 = n2λ− 1

λ2

The first derivative of this function is f ′(λ) = n2 ∗( 2−λ
λ3 ),

which has a global maximum for λ = 2, i.e. 2 layers. In
that case, m1 = m2 = n

2@, and the worst runtime becomes
(n2 )

2 = O(n2). As each comparison takes time O(d), the
overall cost is O(d ∗ n2). We note that, even though the cost
could be improved with an in-memory R-Tree, this might
degenerate to a linear scan for very high-dimensional data.

As we show in Table 7, the pyramid construction is
not responsible for the main cost of computing the com-
petitors. The runtime was only substantial (67 minutes)
for our biggest dataset (100K items), for which we had to
use the naive approach for edge addition, due to the high
dimensionality (d = 22). It was negligible for all the other
cases. However, the structure offered significant runtime
savings during search, especially for the competitors at the
top of the list. Instead, the brute force method that computes
competitiveness between all possible item pairs requires
Θ(2|F| ∗ n2 ∗ logk), which can be easily dominated by the
powerset factor.

TABLE 7: Runtime for creating the Pyramid structure.

Cameras Hotels Restaurants Recipes

Runtime (sec) 0.087 0.152 0.338 3999.322

APPENDIX D
REDUCING THE NUMBER OF CONSIDERED QUERIES

We have already discussed, in Section 5.4, how CMiner
is able to evaluate only a fraction of the total pairwise
coverages, by using the COV ordering scheme introduced
in Section 4.1. Figure 13 portrays the average number of
queries that we must evaluate for each candidate item
before we start computing the exact competitiveness score
of the items in the localTopK structure (lines 23-40 of
Algorithm 1)

Once again, the CAMERAS and RECIPES dataset benefit
the most from this ordering scheme, even for large values
of k, with a 50% less queries being evaluated. This result
also sheds some light to our earlier finding regarding the
computed pairwise coverages results. Interestingly, for those
two datasets, the number of evaluated queries seems to
remain rather constant, despite an increasing k value. The
difference in the number of evaluated queries is also visible
for the remaining two datasets, although not as prominent,
and slightly increasing as k increases too.

Given those results, it is undeniable that the COV
scheme allows us to perform far better pruning, without
sacrificing the correctness of the result. Furthermore, all of
those results, in addition to the ones in Figure 6, validate our
theoretical work regarding the convergence of the approach,
discussed in detail in Section 4.1.
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Fig. 13: Average number of query considerations under different ordering schemes.
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Fig. 14: Computational cost of CMiner on just the top x% of candidates, according to coverage.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

3 10 50 150 300

K
en

da
ll 

T
au

 C
or

re
l

Top-k Competitors

20% 40% 60% 80%

(a) Cameras

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3 10 50 150 300

K
en

da
ll 

T
au

 C
or

re
l

Top-k Competitors

20% 40% 60% 80%

(b) Hotels

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

3 10 50 150 300

K
en

da
ll 

T
au

 C
or

re
l

Top-k Competitors

20% 40% 60% 80%

(c) Restaurants

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3 10 50 150 300

K
en

da
ll 

T
au

 C
or

re
l

Top-k Competitors

20% 40% 60% 80%

(d) Recipes

Fig. 15: Results of using CMiner on just the top x% of candidates, according to coverage.

APPENDIX E
REDUCING THE NUMBER OF CANDIDATES

Despite the scalability that CMiner demonstrated in our ex-
periments, it is still a fairly complex approach that considers
the entire space of candidates. In this experiment, we verify
the need for such an algorithm by evaluating a simpler and
much faster approximation approach.

According to the definition given in Eq. 1, the compet-
itiveness between two items is based on the percentage of
customers that they can both cover. Intuitively it would be
reasonable to expect that candidates with a high coverage
are more likely to be included in the top-k competitors
of a random item. Thus, we hypothesize that, by focusing
exclusively on high-coverage items, we could significantly
reduce the number of candidates that need to be considered.
We evaluate this hypothesis by comparing the top-k sets
retrieved by the CMiner on the full dataset with those re-
trieved when focusing on just the top x% of the candidates,
as ranked by coverage. The two top-k lists are compared
using Kendall’s tau correlation coefficient. We repeat the
experiment for all four datasets, for x ∈ {20, 40, 60, 80}, and
for k ∈ {3, 10, 50, 150, 300}. We report the average value of
the coefficient for each parameter configuration. The results
are shown in Figure 15. We also report the computational
cost of each configuration in Figure 14.

The figures reveal a number of informative findings.
First, as anticipated, higher values of x yield results that

are closer to the exact solution. However, for x ≤ 40%,
the achieved coefficient values were consistently low For
larger values of x, the algorithm delivers results closer to the
correct output, but only for larger values of k. For instance,
for hotels and restaurants, even x = 80% was not enough to
achieve high correlation values for k > 10. With respect to
the computational cost, we observe that significant savings
are only achieved for large values of k (> 50), even if
small percentages of the entire population of candidates
are considered. This is a testament to CMiner’s ability to
efficiently evaluate and prune the search space, while also
computing an exact solution. The results demonstrate that
the a-priori elimination of a percentage of the search space
can have a significant adverse effect on the quality of the
results, while only delivering computational savings in lim-
ited cases. This provides further motivation for our own
approach, which focuses on considering the entire space of
candidates and only eliminates candidates when we have
enough information to guarantee that they are not in the
top-k.

APPENDIX F
EXAMPLE PAIRS OF THE USER STUDY

As an example of the annotation setup, we provide some
sample pairs in Table 8 from the restaurants dataset. The
top-ranked (most competitive) restaurant is better than the
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TABLE 8: Examples of top-, middle-, and bottom-ranked competitors from the user study on RESTAURANTS.

ID Food Service Value Atm. Price Meal Types Good For Cuisines
Focal Item 0.83 0.79 0.74 0.78 0.96 Dinner, Lunch Families Italian

Top 0.9 0.9 0.9 0.80 0.97 Dinner, Lunch
Families, Bar scene,

Italian, PizzaBudget, Large groups
Special occ.

Middle 0.80 0.80 0.70 0.80 0.91 Dinner, Late Night
Bar scene, Large groups

Mediterranean, Middle Eastern
Business, Special occ.

Bottom 0.6 0.80 0.60 0.80 0.67 Dinner Large Groups, Bar scene American

focal (seed) item for all numeric features and covers more
values for all categorical features. On the other hand, the
middle-ranked item has better values than the focal item for
some numeric features (e.g. service) and worse for others
(e.g. price). That being said, the gaps in the values of the
two items are consistently small across numeric features.
In addition, the two items have no overlap with respect to
2 of the 3 categorical features (Good For, Cuisines), a fact
that demonstrates that they compete for different market
segments and lowers the competitiveness. Finally, the bot-
tom ranked item has no overlap with the focal item for any
of the categorical features. This item also has significantly
lower values for many of the numeric features, a fact that
further contributes to its low competitiveness.




